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Abstract. This paper addresses the state observer problem for discrete
two-dimensional (2-D) systems with delays described by the Roesser
model. The main objective of the design is to ensure asymptotic stability
by designing a 2-D observer. It sounds like the paper is proposing a new
method for designing a 2-D observer for a given system. The method is
based on two key concepts: the Lyapunov function and the linear matrix
inequalities (LMIs) formalism. The example is utilized to showcase how
the method can be practically applied to a given system and to evaluate
the observer’s performance.
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1 Introduction

It is interesting to see that the Fornasini-Marchesini local state-space second
model [9] and the Roesser model [16] have been extensively studied in various
domains. These models are widely used in control theory and signal processing
applications due to their ability to describe systems with time-varying coefficients
and time-delayed inputs.

In the domain of controller design, researchers such as [3, 17] have studied the
use of these models in designing controllers for various applications. The Roesser
model has been shown to be particularly useful for designing robust controllers
that can handle uncertainties and disturbances.

In the domain of filter design, researchers such as [8, 14, 10] have studied the
use of these models in designing various types of filters such as Kalman filters and
H-infinity filters. These filters are widely used in signal processing applications
to estimate the states of a system and remove noise from signals.

Stability analysis and stabilization of these models have been addressed by
researchers such as [4–6, 2, 12]. These studies have focused on developing tech-
niques to ensure the stability of the system under various conditions and design-
ing controllers that can stabilize the system.
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Finally, observer design without delay has been addressed by researchers such
as [1, 11]. Observers are used in control theory to estimate the states of a system
when only limited measurements are available. These studies have focused on
designing observers that can estimate the states of the system accurately and in
real-time.

This paper deals with the problem of observing the state vector of a 2-
D discrete system with delays, which is described by the Roesser model. The
goal is to design a delayed 2-D state observer that estimates the system’s state
variables accurately.

To achieve this goal, the paper proposes a new sufficient condition for the
design of the observer. The condition is based on two mathematical tools: the
linear matrix inequality (LMI) method and the Lyapunov theory.

The LMI method is a powerful tool for solving optimization problems involv-
ing linear matrix inequalities. It provides a way to find feasible solutions to a
wide range of problems, including control, estimation, and optimization. In this
paper, the LMI method is used to find a set of observer gain matrices that satisfy
the proposed condition.

Notation: The paper introduces notation conventions that will be used
throughout the document. The n-dimensional real Euclidean space is represented
as IRn, while IRn×m denotes the set of matrices that are n by m. When referring
to real symmetric matrices M, the notation M > 0 indicates that the matrix
is positive definite. The n-dimensional identity matrix is represented as In. The
transpose of a matrix is indicated by the superscript ”T”, while block-diagonal
matrices are represented as diag.... The notation Symm(M) is used to represent
M + MT . In a symmetric matrix, the symmetric term takes the form: ∗, e.g.[
M N
∗ X

]
=

[
M N
NT X

]
. Unless explicitly stated, matrices are assumed to have

compatible dimensions.

2 preliminary steps and problem formulation

The Roesser state space model [16] is used to define a 2-D discrete system with
delays, which is presented in this section as follows:

(Σ) :



[
∂xh(i,j)

∂i
∂xv(i,j)

∂j

]
=

[
A11 A12

A21 A22

] [
xh(i, j)
xv(i, j)

]
+

[
Ad11 Ad12

Ad21 Ad22

] [
xh(i− dh, j)
xv(i, j − dv)

]
+

[
B1

B2

]
u(i, j)

y(i, j) =
[
C1 C2

] [xh(i, j)
xv(i, j)

]
(1)

where xh(i, j) ∈ IRnh and xv(i, j) ∈ IRnv are the horizontal and vertical state
vectors, respectively, u(i, j) ∈ IRm is the input vector and y(i, j) ∈ IRl is the mea-

sured output vector. A =

[
A11 A12

A21 A22

]
∈ IR(nh+nv)×(nh+nv), Ad =

[
Ad11 Ad12

Ad21 Ad22

]
∈
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IR(nh+nv)×(nh+nv),

[
B1

B2

]
∈ IR(nh+nv)×m and

[
C1 C2

]
∈ IRl×(nh+nv) are real

constant matrices of appropriate dimensions. dh and dv represent a horizontal
and vertical delays, respectively.

dhM ≥ dh(i) ≥ dhm, dvM ≥ dv(j) ≥ dvm (2)

The concepts used in this paper are introduced after defining the boundary
conditions of the 2-D delayed system (Σ) using dhm, dvm, dhM , and dvM as the
lower and upper bounds of the delays dh and dv. These boundary conditions are
specified as:

{
x(k, j) = 0 ∀ j ≥ 0 & k = −dh, −dh + 1, ..., 0
x(i, l) = 0 ∀ i ≥ 0 & l = −dv, −dv + 1, ..., 0

(3)

Next, we will present the concepts that are utilized in this paper.

Definition 1. [7]. The 2-D discrete-time linear system with state delay (Σ) is
considered asymptotically stable for u = 0 and all bounded boundary conditions
specified in (3) if:

lim
r→∞

χr = 0 (4)

where,
χr = sup{‖ x(i, j) ‖: r = i+ j, i, j ≥ 1} (5)

In the absence of input and output vectors in system (1), we can describe
the corresponding 2-D state-delayed discrete system (Σ0) as follows:

(Σ0) :

[
∂xh(i,j)

∂i
∂xv(i,j)

∂j

]
=

[
A11 A12

A21 A22

] [
xh(i, j)
xv(i, j)

]
+

[
Ad11 Ad12

Ad21 Ad22

] [
xh(i− dh, j)
xv(i, j − dv)

] (6)

The following lemma presents a sufficient condition for the asymptotic sta-
bility of the 2-D system with delay (1) in the absence of an input vector, i.e.,
when u(i, j) = 0.

Lemma 1. [15]: A 2-D system, as described by Equation (6), is quadratically

stable for any delay 0 < d ≤ d̄ if there exist matrices of the form: P =

[
Ph 0
0 Pv

]
>

0, M =

[
Mh 0
0 Mv

]
> 0 and Q =

[
Qh 0
0 Qv

]
> 0 and X,Y so that the following

LMIs apply: 
−P + dX + Symm(Y ) +M ∗ ∗ ∗

−Y T −M ∗ ∗
PA PAd −P ∗

dQ(A− I) dQAd 0 −dQ

 < 0 (7)

[
X Y
Y T Q

]
≥ 0 (8)
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3 Designing a two-dimensional observer with delays.

This section presents a constructive method for designing a 2-D state observer
for a 2-D discrete system (Σ).

Our goal is to construct a full-order observer that can estimate the state
vector x(i, j) completely, even in the presence of delays where the state vector
cannot be fully measured or inferred from the outputs. The structure of this
observer can be represented as follows:

(Σo) :



[
∂xh

o (i,j)
∂i

∂xv
o(i,j)
∂j

]
=

[
N11 N12

N21 N22

] [
xho (i, j)
xvo(i, j)

]
+

[
Nd11 Nd12

Nd21 Nd22

] [
xho (i− dh, j)
xvo(i, j − dv)

]
+

[
L1

L2

]
y(i, j) +

[
M1

M2

]
u(i, j)

x̃(i, j) = xo(i, j) + Ey(i, j)
(9)

where xho (i, j) ∈ IRnh and xvo(i, j) ∈ IRnv are the horizontal and vertical state
vectors of the 2-D observer, respectively, x̂(i, j) ∈ IRnh+nv is the estimate of
xo(i, j), u(i, j) ∈ IRm is the input vector and y(i, j) ∈ IRl is the measured

output vector. The matrices N ∈ IR(nh+nv)×(nh+nv), Nd ∈ IR(nh+nv)×(nh+nv),
M ∈ IR(nh+nv)×m, L ∈ IRl×(nh+nv) and E ∈ IR(nh+nv)×l must be chosen in such
a way that the observation error asymptotically vanishes to zero.

The boundary conditions given in equations (2) are identical for the full-order
2-D observer system (9).

This section presents a new constructive approach for designing a 2-D state
observer with delay, which guarantees the asymptotic convergence of the esti-
mated state vector x̃(i, j) to the true state vector x(i, j) by utilizing the findings
presented in the preceding sections. Specifically, we analyze the dynamics of the
estimation error, which is defined as follows:[

eh(i, j)
ev(i, j)

]
=

[
xh(i, j)
xv(i, j)

]
−
[
x̃h(i, j)
x̃v(i, j)

]
(10)

Remark 1. For the observer to be asymptotic, the estimation error must ap-
proach zero as (i, j) increases. However, since the state is inaccessible at (i, j) =
(0, 0), we cannot generally choose x(0, 0) = x̃(0, 0) and thus the estimation error
e(0, 0) 6= 0. In order to ensure the asymptotic convergence of the estimation
error e(i, j)→ 0 as (i, j)→ +∞, and to ensure proper operation of the observer,
the matrices N,Nd, L,E, and M defined in (9) must be obtained using a wise
LMI-based approach..

We present a novel sufficient condition for determining the matrices of the 2-D
observer.

Theorem 1. To achieve asymptotic estimation of the state vector using the 2-D
state observer with delay (9), it is sufficient for the following conditions to hold:
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[label=)]if there exist matices the form P =

[
Ph 0
0 Pv

]
> 0, M =

[
Mh 0
0 Mv

]
>

0 and Q =

[
Qh 0
0 Qv

]
> 0 and matrices W,Wq, F and Fq such that the fol-

lowing LMIs hold: −P + dX + Symm(Y ) + R ∗ ∗ ∗
−Y T −R ∗ ∗

PA−WCA− FC PAd −WCAd + FdC −P ∗
d(Q(A− I) −WqCA− FqC) d(QAd −WqCAd + FqdC) 0 −dQ

 < 0 (11)

[
X Y
Y T Q

]
≥ 0 (12)

N = A− ECA−KC, K = L−NE
Nd = Ad − ECAd −KdC, Kd = NdE,
M = (In − EC)B.

1.2.3.4. Proof. From the dynamics of the state reconstruction error given in (10), we can
be written

e(i, j) = x(i, j)− x̃(i, j) (13)

with

e(i, j) =

[
eh(i, j)
ev(i, j)

]
, x(i, j) =

[
xh(i, j)
xv(i, j)

]
and x̃(i, j) =

[
x̃h(i, j)
x̃v(i, j)

]
(14)

The 2-D discrete system with delays (Σ̃) is said to be an asymptotic ob-
server for 2-D delayed system (Σ) if lim

(i+j)→+∞
‖ e(i, j) ‖→ 0 for any boundary

conditions given in (2).
By (9) and (13), we have

e(i, j) = Φx(i, j)− xo(i, j) (15)

where Φ = In − EC, then,

xo(i, j) = Φx(i, j)− e(i, j) (16)

Replacing xo(i, j) by Φx(i, j)− e(i, j), y(i, j) by Cx(i, j).
Then, the temporal evolution of this estimation error can be expressed in the

following way. [
∂eh(i,j)

∂i
∂ev(i,j)

∂j

]
= N

[
eh(i, j)
ev(i, j)

]
+Nd

[
eh(i− dh, j)
ev(i, j − dv)

]
+ (ΦA−NΦ− LC)

[
xh(i, j)
xv(i, j)

]
+ (ΦAd −NdΦ)

[
xh(i− dh, j)
xv(i, j − dv)

]
+ (ΦB −M)u(i, j)

(17)
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Consequently, the 2-D error system converges asymptotically to zero when the
following conditions are met:[

∂eh(i,j)
∂i

∂ev(i,j)
∂j

]
= N

[
eh(i, j)
ev(i, j)

]
+Nd

[
eh(i− dh, j)
ev(i, j − dv)

]
(18)

is asymptotically stable and the matrices M,N,Nd and L are chosen to satisfy
the following conditions: ΦA−NΦ− LC = 0

ΦAd −NdΦ = 0
ΦB −M = 0

(19)

then, we have thatLC − ΦA+NΦ = 0⇒ N(In − EC) + LC − ΦA = 0
ΦAd −NdΦ = 0 ⇒ (In − EC)Ad −Nd(In − EC) = 0
ΦB −M = 0 ⇒ (In − EC)B −M = 0

(20)

therefore, the 2-D observer matrices are given by: N = A− ECA−KC
Nd = Ad − ECAd +KdC
M = (In − EC)B

(21)

with
K = L−NE
Kd = NdE

(22)

and
L = K +NE (23)

According to (23), one should first confirm that one can find the matrices E,
N , and K if the observation error (17) is asymptotically stable and the three
conditions b), c), and d) of Theorem 1 are verified, then one searches for the
matrix L.

Using the information provided in lemma 1, we can conclude that the 2-D
error system described in equation (18) will be asymptotically stable for any
delay dh and dv satisfying 0 < dh ≤ d̄h and 0 < dv ≤ d̄v, if there exist matrices

of the form: P =

[
Ph 0
0 Pv

]
> 0, M =

[
Mh 0
0 Mv

]
> 0 and Q =

[
Qh 0
0 Qv

]
> 0

and X,Y such that the following LMIs hold:
−P + dX + Symm(Y ) +M ∗ ∗ ∗

−Y T −M ∗ ∗
PN PNd −P ∗

dQ(N − I) dQNd 0 −dQ

 < 0 (24)

[
X Y
Y T Q

]
≥ 0 (25)
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From the equation (21) we have
PN = PA− PECA− PKC
PNd = PAd − PECAd + PKdC
ZN = ZA− ZECA− ZKC
ZNd = ZAd − ZECAd + ZKdC

(26)

which leads to unavoidable bilinearities in (24), that can be solved by using the
change of variables defined by 

W = PE,
F = PK,
Fd = PKd,
Wq = QE,
Fq = QK,
Fqd = QKd,

(27)

As equation (11) can be derived from the bilinear matrix inequality (24), the
matrices for the 2-D state observer can be obtained by means of the following
iterative method.

Algorithm

– Step1. Find a set of matices the form P =

[
Ph 0
0 Pv

]
> 0, M =[

Mh 0
0 Mv

]
> 0 and Q =

[
Qh 0
0 Qv

]
> 0 and matrices W,Wq, F and

Fq, which satisfyies (11).
– Step2. Compute matrices K, Kd and E using (27), then:

E = P−1X1,
K = P−1X2

Kd = P−1X3

(28)

– Step3. Compute matrices N and Nd given in (21).

– Step4. Compute matrices L in (23)

this completes the proof of Theorem1.

4 Numerical example

In this example, we study a 2-D discrete system with delay in the form (1),
described by the following parameters [13]:

A =

[
1 2
3 2

]
, Ad1 =

[
0.1 1.5
0.1 0.3

]
, B =

[
0.5
1

]
, C =

[
2 1
]
. (29)
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Our goal is to reconstruct the internal state of the 2-D system with delays given
by equation (1). To accomplish this, we require the estimated states to converge
asymptotically to the true values, which will enable us to build a 2-D state
observer. More precisely, we aim for the horizontal eh(i, j) and vertical ev(i, j)
estimation errors to converge to zero as i, j → +∞, respectively.

To design a 2-D asymptotic state observer, we will apply Theorem 1, and
verify that the LMI condition given in (11) is feasible. Once this is established,
we can use the algorithm to obtain the matrices for the 2-D observer with delays,
which are as follows:

N =

[
0.3367 0.3007
0.6389 0.6174

]
, Nd =

[
−0.0047 −0.0022
−0.0121 −0.0096

]
, L =

[
−0.0173
−0.0455

]
,

M =

[
0.5000
1.0000

]
, E =

[
0.3435
−0.2986

]
.

(30)

Figures 1 and 2 show the trajectories of the estimation error system eh(i, j) and
ev(i, j), respectively, corresponding to random initial boundary conditions. As
i + j → ∞, all trajectories asymptotically converge to zero, indicating that the
2-D state observer with delays is indeed asymptotically stable.
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Fig. 1: Horizontal error eh(i, j)
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Fig. 2: Vertical error ev(i, j)

5 Conclusion

Overall, the proposed method offers a new approach to designing 2-D state
observers with delays that can be applied in various fields, such as image and
signal processing, control, and communication systems. Additionally, the use of
LMI conditions allows for efficient and robust design of the observer, and the
simulation results demonstrate the effectiveness of the proposed method. Future
work can focus on applying the proposed method to more complex systems and
comparing its performance with other state observer designs.
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