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Abstract.  The FDTD is derived by discretizing Maxwell's equation using the fi-nite difference 

(FD) method, it is commonly used in solving differential equations [1]. One fundamental challenge 

faced during implementing FDTD method is the application of boundary conditions, it can be 

employed to enhance the perfor-mance of the simulation. To evaluate the effectiveness of different 

boundary con-ditions, a one-dimensional FDTD simulation is carried out in this work. The im-pact 

of various boundary conditions such as PEC, PMC, 1st order Mur Bounda-ry and PML and CPML, 

on the plane wave propagation along the z axis are explored. The choice of each boundary depends 

on the specific problem being solved. 
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1.    Introduction 

FDTD (Finite Difference Time Domain) is a numerical method for solving 

electromagnetic field equations in the time domain. This method is widely used to 

simulate and analyze the propagation of electromagnetic waves and their interactions 

with various structures and materials [2] . FDTD computer simulations are frequently 

used in microwave and photonics design, radar cross-section calculation, and 

electromagnetic field propagation of antenna radiation. 

Applying FDTD to problems where the solution regions are unbounded becomes 

difficult. We need to establish some sort of limits on the regions of our solutions because 

no computer can store an unlimited amount of data [3].  

Boundary conditions are a way to limit the solution domain and create the digital illusion 

of infinite space, such as boundary conditions play a crucial role in FDTD simulations 

because they define how electromagnetic fields interact with the boundaries of the 

computational domain. There are several FDTD absorbing boundary conditions, the most 

common are the perfectly matched layer (PML), and Mur’s absorbing boundary, and 

Perfect electric conductor (PEC) and Perfect Magnetic conductor (PMC). The use of 
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these boundary conditions depend on the specific problem you want to simulate. In order 

to obtain accurate results, it is important to choose the boundary conditions that best suit 

your situation. such as The Mur’s absorbing boundary condition is a commonly used 

method to absorb outgoing waves from the simulation domain in order to prevent 

reflections. and the Perfectly Matched Layer (PML) is an advanced form of the Mur 

condition that enables better absorption of electromagnetic waves. Where (PMC) and 

(PEC) these boundary conditions are used to model objects that are perfect dielectrics. It 

assumes that the magnetic fields the electric field are zero at the boundary of the 

simulation domain. 

This report describes the governing equation by numerically constructing the Yee 

Algorithm in 1-Dimensional (1-D) system using MATLAB programming language to 

describe the distribution of the mode within four types of boundary conditions. First, with 

(PEC and PMC) boundary condition, second with Absorbing Boundary Condition 

(ABCs), and third with The Perfectly Matched Layer (PML), and four with 

Convolutional Perfectly Matched Layer (CPML). The field Ex and Hy are simulated 

along the z axis in free space region. The wave is excited by a Sinusoidal source 

modulated by a Gaussian located at a specified position within the simulation domain. 

and in homogenous and isotropic media, where the conductivity, permeability, and 

permittivity are all constant throughout time, this mode can spread. 

The basic theory FDTD method in 1D along the z axis is shown in Section 2. in Section 

3, results of simulations in 1D FDTD with difference case of boundary conditions are 

presented, the paper concluded with remarks are in section 3. 

2.    Theory 

2.1.    Maxwell's equations 

Maxwell's equations that govern the propagation phenomena are the starting point of the 

FDTD method. For the case of an anisotropic medium, homogeneous and loss-less, 

Maxwell's equations under differential form are written. 

 

 (1) 

 

    (2) 

 

where μ and ε respectively, denote the material's permeability and permittivity. Let us 

consider that neither the physical properties of the medium nor the sources vary along the 

x- and y-axes. 
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While that 𝐸z and Hz, the longitudinal field components, are always zero. and that 

Maxwell’s and equations have decoupled into two sets of two equations. While these 

modes are physical and would propagate independently, the are numecally the same  and 

will exhibit the same electromagnetic behavior . therefore, it is only necessary to solve 

one. we will proceed with the 𝐸𝑥∕𝐻𝑦 
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This is an example of a plane wave moving in the z-direction. 

2.2.    Discretization of Maxwell's Equations 

 

for stable finit-diffrence equation Each term in a finite-difference equation must exist at  

the same point in time and space[4] . For this reason, Yee proposes to shift the calculation 

of the fields by half a time step[5], the so-called "leapfrog time step" : 

H is given at times (n - 1/2)∆t, (n + 1/2)∆t, (n + 3/2)∆t ... etc.  

and E to the moments (n∆t, (n + 1)∆t, (n + 2)∆t … etc. 

 

 

 

 

Fig. 1. Temporal evolution of electromagnetic fields. 
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The discretization of Equations (8) and (9), respectively, is now being considered 

individually, for 𝐸𝑥∕𝐻𝑦 mode using central difference: 

the equation (8) become: 

 

 

           (10) 

 

 

the equation (9) become: 

       

           (11) 

 

 

From (10) and (11) one can deduce the explicit FDTD equation and get: 
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2.3.    stability 

The Courant-Friedrichs-Lewy (CFL) condition, a stability criterion, sets a limit on the 

time increment ∆𝑡 in FDTD [6]. 

For the sake of stability 

 

                                                  (14) 

 

The stability criterion restricts the amount of time that can be added to the FDTD time 

increment, where: 

 

 

 

is the speed at which electromagnetic waves can travel through the medium. 

 

 

So 
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3.    Simulation and results with difference boundary 

To validate the boundary conditions in the FDTD simulation, the reflection and 

transmission behavior of the sinusoidal source modulated by the boundary conditions are 

presented in the free space region along z direction z=12,5. 

where the wave collide the boundary at t= 30.10e-15s and the origin of the source on 

the z axis is z=3 in the case the PMC, PEC, ABC boundary and z=250 in the case the 

perfect matched layer PML boundary. The explicit FDTD algorithm is used and 

calculated by using the original MATLAB codes. 

the Sinusoidal source modulated by a Gaussian. as the initial pulse at t=0 
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Initialization ought to be carried out at the start of a simulation. 

So, the equation (12) and (13) can be simulate in MTLAB[8]. 

3.1.    PEC Boundary  

Equations in this section we apply the PEC to Z=Zmax=12.5µm or K=M=500 and let the 

code run long enough. 

Or, Perfect electric conductor (PEC) boundary are specified by simply setting the 

boundary electric field node 𝐸x(M+1)=0. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. the Ex and Hy at (a)  t=20.3e-15s and (b)  t=56.3e-15s   

This in Fig. 2 (a), this outcome is displayed. We can observe from the simulation that 

𝐸𝑥 and 𝐻𝑦 were apart before they collided (K=500). The 𝐸𝑥 and 𝐻𝑦 share the same 

phase. is irrelevant because it serves as the initial condition, which we define. The 

circumstance under which the wave collides with the border is crucial. We can see from 

the simulation in Fig. 2(b) that 𝐸𝑥 and 𝐻𝑦 eventually collide the boundary. The 

interference appears to be constructive in 𝐸𝑥 but destructive in 𝐻𝑦 due to the 180° phase 

difference between themes. It is reflected in the same magnitude but the opposite phase. 
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3.2.    PMC Boundary  

In this section we apply the PMC to Z=Zmax=12.5µm or K=M=500 and let the code 

run long enough. 

Or, Perfect Magnetic conductor (PMC) boundary are specified by simply setting the 

boundary magnetic field node 𝐻𝑦(M)=0. 

 

 

 

 

            

 

 

 

 

 

 

 

Fig. 3. the Ex and Hy at (a) t=20.3e-15s and (b) t=56.3e-15s. 

From the Fig. 3 (b) During the collision, part of the incident pulse reflects off the PMC 

and interferes with its own trailing tail, this interference happens to be constructive in Hy 

but destructive in Ex due to the phase difference of π between them. That means that the 

boundary is acting like an operator for changing the phase but still preserve the 

magnitude. 

3.3.    1st order Mur Boundary  

gives the equation describing the first-order Mur limit In Note [3]. We will update these 

equations so that they agree with the notation used here. Place mur radiation limit at node 

1 or first electric field node on the left 

 

                          (17) 

 

Place Mur Radiation limit at node M or last electric field node on the right 

 

        (18) 

 

If cΔt-Δx =0, the second term on the right hand side of Equations (17) and (18) will 

vanish. 

Under the condition Δt =Δx/c The absorbing boundary condition for the 1-D case can 

be therefore expressed by 

For z=1 
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For z=M 

 

 

which is the same as the result obtained by common sense approach. 

Finally, we simulate the equation (19) and (20) using MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. the Ex and Hy at (a)  t=20.3e-15s and (b)  t=56.3e-15s   

From the figure.4. (b), The wave after collides with the boundary, there are no reflected 

wave. It is called as ABCs boundary condition which can absorb the magnitude of both 

TE and TM. So Mur's ABC is a simple absorbing boundary condition that can be used 

to model free-space boundaries. It approximates an open boundary by setting the fields 

to zero at the boundary points, preventing reflections 

3.4.    Perfect matched layer PML  

The  most  popular  ABC  today  is  the   perfectly  matched  layer  (PML)  that  was  

introduced  by  Jean‐Pierre  Berenger  in  1994[6]. 

the problem statement for the PML is we need a boundary region that provides 100 % 

transmission so absorbing all waves and 0% reflection for all waves independent of the 

polarization, incidence angle, and frequency. Specifically, 

for normally incident electromagnetic waves, when the following three relations are 

satisfied, 

we can get Γ= 0 : 𝜇1 = 𝜇2 and 𝜀1 = 𝜀2 , and  

 

 

 

But how do we include this PML region into our simulation space now we know the 

parameters that we have to implement .  

the answer is we put them into maxwell’s equation so we modify maxwell’s equations to 

include the PML conductivities . 

we modify Maxwell’s equations to include the PML conductivities 
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           (19) 

 

 

 

               (20) 

 

gives the equation describing The polynomial grading of conductivity: 

 

 

              (21) 

 

Where z is the thickness for nth layer within the PML. Symbol d is the total 

thickness of the PML, M is the order of the polynomial, σ_max is a maximum 

conductivity when z=d. 

Finally, we simulate the equation (19) and (20) by using PML with d=55 and M=3 and 

𝜎𝑚𝑎𝑥 = −(M + 1) ∗ log(R)/(2 ∗ neta ∗ d ∗ dz) , where R is required reflectivity 

And neta is impedance in free space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. the 𝐸𝑥 and 𝐻𝑦 at (a) t=15.2e-15s and (b) t=56.3e-15s 

From the figure.5. (b) above, the wave after collide with the boundary, there are no 

reflected wave it mains 0% reflexion and 100% transmission .so PML is an absorbing 

boundary condition that effectively absorbs outgoing waves. It is widely used in FDTD 

simulations to model open boundaries. PML layers are added to the edges of the 

computational domain, and the fields are attenuated within these layers. 

3.5.    Convolutional Perfectly Matched Layer (CPML) 

For the CPML boundary it is specifically designed to improve the absorption of outgoing 

waves and reduce reflections at the boundaries. And it is an extension of the 

Perfectly Matched Layer (PML) technique. 
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The CPML parameters are scaled as follows: kappa =1+(sigma *dt)/(2 * ep) 

And alpha= sigma./(kappa* ep) and 𝜎𝑚𝑎𝑥 = −(M + 1) ∗ log(R)/(2 ∗ neta ∗ d ∗ dz). 

Where polynomial scaling M= 4. and updating the equations (32) and (33) for auxiliary 

parameters and electric and magnetic field components. 

 

 

 

 

 
 

 

 

 

 

 

 

                                          Fig. 6. the 𝐸𝑥 and 𝐻𝑦 at (a) t=18.3e-15s and (b) t=50.3e-15s . 

The results of CPML have shown in Fig. 6. (b) that it has negligible reflection , We 

see also resulting in faster simulations compared to PML. So CPML's convolutional 

update reduces the number of calculations required compared to PML, and resulting in 

faster simulations. 

4.    Conclusion 

The FDTD approach is popular because of its ease of numerical solution. It uses finite 

differences to discretize Maxwell's time-dependent curl equations in order to solve 

them. This report outlines the 1-FDTD simulation design for the Ex/Hy mode in the 

free space area. Additionally, this paper effectively presents a 1D-FDTD code that 

implements PEC, PMC, and 1st order Mur Boundary and perfect matched layer (PML) 

and CPML. To this end, the specific choice of boundary condition depends on the nature 

of the problem being solved and the desired simulation outcomes. For example if 

we are modeling an interface between two different materials, we may need to use a 

boundary condition that accurately represents the reflection and transmission of waves 

at that interface, such as the Perfect Electric Conductor (PEC) or Perfect Magnetic 

Conductor (PMC) boundary conditions and if we want to minimize reflections, we may 

consider using the Mur Absorbing Boundary Condition or perfect matched layer PML. 
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